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In this paper we want to prove the following theorem: Let X be an infinite 

set of non-abelian finite simple groups. Then the free group F2 on 2 gen- 

erators is residually X. This answers a question first posed by W. Magnus 

and later by A. Lubotzky [9], Yu. Gorchakov and V. Levchuk [4]. 

1. I n t r o d u c t i o n  

A group G is called residually X if the intersection of all normal subgroups Nfl G 

such that G/N E X is the trivial group. In this paper we consider a certain 

residual property of free groups Fn on n generators (n ~ 2). We consider the 

case in which every group in X is a non-abelian finite simple group and X is 

infinite. For these classes we prove the following theorem: 

THEOaEM 1: Let X be any int~nite set of non-abelian ~nite simple groups. Then 

the free group F2 on 2 generators is residually X. 

This answers a question first posed by W. Magnus and later by A. Lubotzky 

[9], Yu. Corchakov and V. Levchuk [4]. As every non-abelian free group F ,  is 

residually {F2} [14], the transitivity implies that  F,= is also residually X. So the 

theorem still holds for any free group Fn, where n is a cardinal number greater 

than 1. 

To prove Theorem 1 we show the following: 
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THEOREM 2: Let Z be an intlnite set of exceptional groups of Lie type such that 

all groups are of the same type. Then the free group F2 of rank 2 is residually 

Z. 

Then the proof of Theorem 1 can be carried out as follows: 

Proof of Theorem 1: Let X be any infinite set of non-abelian finite simple 

groups. Then the pidgeon-hole principle and the classification of finite simple 

groups imply that one of the following has to hold: 

(a) X contains an infinite set of alternating groups. 

(b) X contains an infinite set of classical groups of Lie type 

(c) 2/contains an infinite set of exceptional groups of Lie type. 

In case (a) the assertion was proved by R. Katz and W. Magnus [6]. In [18] 

and [19] the assertion was proved for classes of groups X satisfying (b). So the 

only case we have to consider is (c). The pidgeon-hole principle implies that  it is 

sumcient to consider infinite classes of groups Z consisting of exceptional groups 

such that each group is of the same type. Then Theorem 2 implies the assertion. 

l 

For some certain classes of finite simple groups it has already been known 

for some time that the desired assertion holds. These classes are of the form 

{X(S) IS E .M/} where X is some scheme of twisted or untwisted Chevalley 

groups, AA is a set of finite fields and there exists a ring R such that each element 

of dV[ is a homomorphic image of R and the intersection of all the kernels of the 

homomorphisms of R onto an element of .M is trivial. Now this ring R should 

have the following property: X is defined over R, one can find a subgroup F < 

X(R)  which is isomorphic to the free group on 2 generators and @*s : F ~ X(S) ,  

where ~I'~ is induced by ~ s  : R ~-* S, is onto for all but finitely many S E .all. 

Under this assumption it is an obvious consequence that the free group F2 on 2 

generators is residually {X( S)[S E A4}. 

For certain classes {X(S)IS E .M} and some polynomial ring R an explicit 

subgroup F <_ X(R)  has been constructed, such that k~* s : F ~-* X(S)  is onto for 

all but finitely many S E .h4 ([7],[8],[15],[22]). 

In [9] A. Lubotzky considers the case where X and R can be chosen, such that  

X(R)  has the "strong approximation property" for every Zarisky dense subgroup 

[12],[21]. By a theorem of J. Tits it is known that  X(R) contains a Zarisky dense 

subgroup of F isomorphic to the free group of rank 2 and so the desired result 
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foUows. 

Now in the cases we are considering we cannot take a ring R for which a "strong 

approximation theorem" is known. For a scheme of exceptional type it is difficult 

to find a subgroup F E X(R) isomorphic to the free group on 2 generators, such 

that  g2*s: F ~ X(S) is onto for all but finitely many S. The only cases in which 

this attempt has been successful so far are if X is of type 2B2, 2G2 or A,. 

We choose a different approach which was already used to obtain the desired 

result for classes satisfying the condition (b) ([17],[18],[19]). The background of 

the following theorems is to obtain a lower bound for C(GF), where C : ~2 

Nt9 {or} is the function defined on any 2-generated group introduced in [18]. We 

recall the definition. Let G be a group generated by two elements. Let MG C_ F2 
be the set of all words in x and y vanishing on all pairs of elements s and t of G, 

for which < s, t > =  G is satisfied. Then we define 

C(G)=min{~(w) ,wEMG\(1}} ,where  rain( } = o o .  

We see easily that the definition is independent of the generators x, y E F2. The 

following theorem gives the connection between the set of values of this function 

on a class of 2-generated groups X and residual properties for the free group F2 

on 2 generators ([18], theorem 2). 

THEOREM 3 : F 2  is residually Z ~ (C(G) [ G e X} is an unbounded se~. 

All notations used in the following are standard and can be found in [1], [2] 

and [3]. For each finite simple group of Lie type we look at the corresponding 

covering (central extension) GF which is the fixed point set of some Frobenius 

map defined on an algebraic simple simply connected group G. For each of these 

groups GF we choose an element c E GF which generates a certain cyclic maximal 

torus TF. The type and the order are listed in Table 1. The case that Z is a 

class consisting of groups of type 2B2 or 2G2 is not considered in the following, 

as in this case Theorem 2 is already proved in [7] and [8]. 

The proof of theorem 2 will be found in section 4. 

2. T h e  Verbal  Topo logy  and  Zariski  Topo logy  for Afflne  Algebra ic  

G r o u p s  

Let G be an affine algebraic group. Then it carries the well known Zariski 

topology. Here the closed sets are exactly the affine subvarieties of G. On 
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any group G there can be defined the verbal topology as follows: Consider a 

reduced word w E Fn in the free group F ,  on n generators. Now we can interpret 

Tab l e  1 

GF Type of TF[2] ITF[ Remark 

G2(q) G2 q2 _ q + 1 

3D4(q ) _ q4 _ q2 + 1 

F~(q) F~ q, _ q2 + 1 

E6(q) E 6 ( ~ )  q~ + q~ + 1 
2 E e ( q  ) _ qS _ q3 -t- 1 

ZT(q) E7 (q + 1)(q ~ - q~ + 1) 
E ~ ( ~ )  (q - 1)(q ~ + q~ + 1) 

Es(q) Es qS .{_ q7 _ q5 _ q4 _ q3 q. q + 1 

~F~(2 ~k+~) - %' + v~qo ~ + qo ~ + v~qo + 1 

q = 0, 1 mod 3 

q - 2 mod 3 

qo = 2kx/2 

n - 1 of the generators as constants (elements in the group G) and one as an 

indeterminate, e.g. for c l , . . .  ,cr E< g l , . . .  ,g,~-I >_< G consider wg~ ..... g,_~(z) = 

x ~ c l  . . .  x ~ c r .  The vanishing set of wg~ ..... g,_~ is now defined by 

V~n~,, ..... ,o_,(G) = {~ e C I w(z)  = 1}. 

The vanishing sets for all reduced words and any set of constants form a subbase 

of the closed sets of the verbal topology. We also see that  if G is an affine algebraic 

group then every set which is closed in the verbal topology is also closed in the 

Zariski topology. Next we prove that  if G is a simple algebraic group of the type 

listed in Table 1 the group G cannot be equal to a certain vanishing set. Therefore 

we need a theorem concerning certain free products of groups in PGL(2,  Fq(z)) .  

THEOREM 4: Let c be a non-trivia~ semisimple elemen~ contained in a spli~ 

torus o fPGL(2 ,  Fq). Then there exists an element t e PGL(2,  Fq(x)) (a /ready 

eSL(2 ,F , (x ) ) )  < c > I_I free product ofacy li  in 

subgroup of order ord(c) and the free cyclic group g .  

Proo~ For PGL(2,  Fq(z))  we have the natural  action on the projective line 

Fg(x)  U {c~}. Without  loss of generality we may assume that  c is fixing oo and 
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0. Furthermore we may assume that c is acting on Fq(x) by p .  c = p .  ~, where 

• F¢  is an element of order ord(c). 

On Fq[x] there is defined the degree function 0 which can be extended to Fq(x) 
by: 

o ( f ) = o(f) - O(g), for f , g E Fq[x]. 

Here 0(0) is defined to be -o¢ .  This function can be made into a valuation 

on Fq(x) if we define IPl =exp(0(p)) .  Then we obtain the usual equality and 

inequality, for a, b • Fq(x): 

la + bl ~< lal + Ibl, 

[a-bl = lal" Ibl. 

We define open balls and circles as usual: 

B r ( z )  = {e  • F q ( x ) l l z  - 01 < r} and kr(z)  = {O • F q ( x ) l l z  - el = r}.  

By definition c leaves the valuation I.I invariant, that means Ip.cl = [p[, for all 

p • Fq(x). 

For all n • /V,  n > 2, we  have:  Ix" - xn.ckl  = e", w h e r e  k ranges  over  

the  set  { 1 , . . . , o r d ( c ) -  1}.  T h e r e f o r e  for two  p o i n t s  z,  zo w h e r e  z • B ~ ( x " ) ,  

z0 • B l ( x " ) . c  k, w e  get  the  fo l lowing  inequal i ty :  

[z - z0] = ]z - x n - z0 + : . c  k + z "  - : . c k l  

> I :  - : . c ~ l -  (1~ - : 1  + I~o - : . : 1 )  

So the two points z and z0 always have positive distance, and this implies that 

c is an element all of whose non-trivial powers c k are sending Bl(x n) into the 

complement B1 ~- -~ .  To apply the ping-pong lemma of Lyndon and Ullman 

[10], we have to look for an element t all of whose non-trivial powers t ~ send 

Bl(xnm'~ into Bl(xn). Therefore we look for an element s e PSL(2, Fq(x)) for 

which Bl(O)~:.s k C_ BI(O) holds for every k ¢ 0. Take s to be represented by the 

matrix 

X n x - 1  • 
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Then the powers s k, [k I > 2 have the form 

S k = ( xk 
\ vk(z) 

where 

0) 
~ - k  , 

Isr. J.  Ma th .  

pk(x) = sgn(k)(x n-(lkl-D q- x ~-(1~1-3) + . . .  Jr x n+(Ikl-3) q- xn+(Ikl-l)). 

Therefore we have 

f . s  k = 

and this implies for Ifl -> 1 

f • x k x k 

Pk(X)+  

1 --1 If.ski = Izkl Ipk(z) + x-~fl 

< elkl(en+(Ikl-1)) -1 = e - n + l .  

So for n _> 2, s is an element that  has the property that  Bl(O)C.s ~ c C_ B1(O) for 

k ~ 0 and s has infinite order. Let us define 

t =  1 s 0 1 " 

Then t has infinite order and Bl(zn)C.t k C Bl(x n) for k ¢ 0. Now we can apply 

the ping-pong lemma ([10], lemma A) to the group < c, t  > and this completes 

the proof. | 

The next point we have to consider are reduced words in two generators and 

their vanishing set in algebraic groups. Let w -- x~ly ~ .--  x ~ ' y  ~" E F~. Then for 

c E G we define we(x) = x m c  #~ . . .  x~ ' c  # ' .  The next theorem considers algebraic 

groups on which the functions Wc do not vanish, if the element c is semisimple 

and one further condition is satisfied. 

THEOREM 5: Let c be a non-central semisimple element o[ the algebraic group G 

defined over Fq. Assume further that there exists a reductive subgroup I t  such 

that c E 11 and [11,11] ~- (P)SL(2,F'qq). Let T be a maximal torus containing 

c. For the root a 6 cI,(H) C X ( T )  assume that a ( <  c >)  ~ <  c > Z(G)/Z(G) .  

Then for any non-trivial reduced word we in two generators with constants in 
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< c > \Z(G),  i.e. z~'c  ~1... z~'c  ~', with fl, • {1, . . .  ,ord(cZ(G))}, the vanishing 

set Vanw=(G) is not equal to the whole group G. 

Proof.. Assume that G =Vanw~(G). Then we also have H =Vanw.(H).  Let us 

define 

p: H ~ H/Z(H)  ~- [H, H]]~H ' H] N Z(H)  ~- PGL(2, F'qq). 

Then we also have p(H) =Van~p¢o)(p(H)). Furthermore wp(c)(x) is a non-trivial 

word of positive length £. This follows easily because we assumed that 

c >) < c >Z(G)/Z(G). 

Let ZI -~ PGL(2, Fq-,) be a subgroup of p(H) containing p(c) such that p(c) 

is even contained in a maximally split torus of Z1. Then we find a series of 

subgroups Z~ -~ PGL(2, Fq,,~ ), Zk _< Zk+l and p(c) lies in a maximally split torus 

of Zk for all k's. By Theorem 4 we can find a subgroup g of PGL(2,Fqm(x))  

isomorphic to < p(c) > I.I 77' containing p(c). So for each k we have the following: 

Z1 - PGL(2, Fqm) , < p(c) > 

1 1 
P G L ( 2 , F ¢ . ( x ) )  , K ~ - < p ( c ) > [ I ~  ~k, Z k ~ P G L ( 2 , F ¢ . , )  

PGL(2, F'qq) 

where each arrow means inclusion except the map Ck : K ~-* Zk, which is a mor- 

phism of the finitely generated subgroup g of PGL(2, Fq-, (z)) in PGL(2, Fq.,h ) 

by sending x to a primitive element in Fq.,k. Let t be a generator of 7Z < K. Then 

for each k we get: Ck(t) e Vanw,¢°)(Z~). As g is residually {¢k(g )  [ k > k0}, 

wp(c)(t) E K has to be the trivial element in K. So w~(b) •<  a,b >-- F2 has to 

be contained in < (a~) * [ z e F2 > where ~ =ord(p(c)). But this is impossible 

by the choice of w and the proof is complete. | 

For our purpose we have to apply Theorem 5 to the generating element of the 

cyclic torus TF. The following proposition shows that this is possible. 

PROPOSITION 6: Let G be a simple algebraic group and F: G ~ G a Fkobenius 

map such that G F is one of the groups listed in Table I. Let T be an F-stable 

max/real torus for G such that TF is of the types listed in Table 1. Let w • W be 

an element such that T is obtained from the maximally split torus To by twisting 

with the element w. Then there exists a root a • ~(To) such that the following 

holds: 
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(a) I[ GF is of type G2 for any root a E ~(G2) we obta/n 

(~ I • e <  F.~ > ) ~ s~; 

if  GF is of type F4 and a E ~ is a long root then 

(w~ l x e< F.w > ) = W(D4).3 < W(F4). 

I f G f  is of type 3/94, 2F4, 2E6, E6, E7 or Es, then there exists a root a E 

such that W = (w~ Ix e <  F.w > ). 
(b )" Let g e G be such that v( f (g)g  -1) = w and T = T~, where ~r: gu(To) 

W is the canonical epimorphism on the Weft group. Then kerT0(a) f3 

(TF) g-' <_ Z(G). 

Proof: (a) If GF is not of type 2F4 this is an immediate consequence of the 

propositions 6, 7, 8, 10 and 11 of [20]. So only the case that GF is of type 2Fa 

has to be considered. Let a G • be any root and assume that 

is a proper subgroup of W(F4). As W0 is generated by reflections W0 has to be 

a Weyl subgroup of W with corresponding root system ~ = {7 E ~ [ w-r G W0}. 

Then k~ is invariant under F.w. By theorem 5 of [20] there is a proper F-stable 

reductive subgroup H of G containing T. So we conclude that TF < HE < GF. 

But this is a contradiction to the main result of [11] and our assertion holds. 

(b) Here we use the fact that (TF) g-' =FixTo(F.w ) (cf. Prop. 3.3.6 of [3]) and 

kerTo(a) _<FiXTo(Wa). Therefore if GF is not of type G2 or F4 we have: 

kerTo(a) (7 (TF) f '  <_ FixTo(w~ ) fq FixTo(F.w ) = FixTo(W. < F >). 

So we have to look at S =FixTO(W. < F >) _< (TF) g-' . Let t E S. Then for all 

7 E ¢(T0) the following holds: 

~(t) = ~ ( t ~ )  = ~ , ( t )  = ~ ( t ) - i .  

So S/Z(GF) has to be 2-group. But in all the cases except the case that GF is 

of type ET, TF is of odd order and this already implies the assertion. If GF is 

of type Ev we can use the fact that [S[ has to divide the order of any maximal 

torus of GF and so we obtain 

ISll gcd ((q + 1)(q ~ - q~ + 1),(q - 1)(q ~ + q~ + 1)) = gcd(q - 1,2) 
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and this leads to our assertion in this case. If GF is of type F4 then similar 

arguments lead to the case that FiXTo(W(D4).3. < F > ) equals the center of 

3D4(q) which is trivial and so the proposition holds in this case as well. If GF is of 

type G2 the argumentation is a little bit different: Let S be 3-Sylow subgroup of 

(TF) g-' . Then Isl = 3 or Is[ = 1. If s is non-trivial, S is also non-central and so 

there exists a root a such that S/~ kerT0(a ). Let W0 = (w~ Ix e <  F.w > ) and 

= {7 e ~ [ w.y E W0}. Then ~ is a root system of type A2 and so kerT0(W0) is 

isomorphic to 2Z3 or trivial. But in both cases we obtain kerTo(Wo)N(TF) g-' = 1. 
| 

The statement we need in one of the following sections is the following: 

COROLLARY: Let G be a simple algebraic group and F a ~obenius  map on G 

such that GF is one of the groups of Table 1. Let c be a non-central e/ememt 

that generates a maxima/ torus  TF of the type listed in Tab/e 1. Then for any 

word v = z~ty  al .. . z ~ ' y  a" in two generators with fli E {1, . . .  ,ord(cZ( G)) } the 

vanishing set Van~,(G) is a proper subset of G. 

Proof: For each group G let a E ff be a root that satisfies the assertion of 

Proposition 6(b) and define H = <  Ua, U_,~, To >g. Then kerT0(a) Iq (TF) g-t < 

Z(G) and this implies that  a(TF) -~ TFZ(G)/Z(G) .  Then Theorem 5 implies 

the assertion. | 

3. The  N u m b e r  of  Rat ional  Po ints  on an Affine Variety  

Let K be a locally finite algebraically closed field of positive characteristic and 

F a Frobenius automorphism of K with q fixed points on K .  We denote the 

induced map K n ~ K n also by F. In the following we want to consider an 

irreducible afflne variety X C K n. We want to obtain an upper bound for [XF[, 

the number of F-rational points on X. Therefore we define the degree for affine 

varieties in the following way: Let us consider the embedding a : K n ~ p n  of 

K n in the n-dimensional projective space p n  such that o'(K n) is a dense open 

subset of P "  (see [13], p.22). Let us define ~(X) = a(X) ,  where a ( X )  is the 

Zariski closure of the image of X in p n .  Then for any irreducible affine variety 

X _C K "  we define: deg(X) =deg(~(X)).  This is a well-defined function on 

the set of irreducible affine varieties ([13], chapter 5). Furthermore let H be an 

irreducible hypersurface in K n. Then ~(H) is an irreducible hypersurface in 

P " .  If X ~ H then the intersection ~(X) N ~(H) = Z~ U-- .  U Zr is a variety 
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all of whose irreducible components Zi have the same dimension. In this case we 

obtain the following: 

deg(V(X))-deg(~'(H)) = E i(V(X),-~(H);Zk).deg(Zk) 
1_<k_<r 

where i('~(X),V(H); Z~) e 17 are the intersection multiplicities (see [5], p. 53, 

theorem 7.7). In the affine case this implies the following: Let H C K'* be an 

afrme hyperplane of K n. Let X N H = Y1 U ... U Yr, where the l~'s are the 

non-trivial irreducible components of X fl H. Then 

r _< deg(X).deg(H) and 

(3.1) deg(l']) < deE(X), deg(H) for all i = 1 , . . . , r .  

This leads to the following 

THEOREM 7: Let X be an irreducible afBne variety over I f  of dimension k and 

degree d. Then [XF[ <_ d k. qk. 

Proof." We will prove the assertion by induction. If the dimension of X equals 

zero X is a point and there is nothing to prove. So let us assume that the 

inequality holds for every irreducible affine variety of dimension less than k. We 

may also assume that X _C K n, but that X is not contained in any F-stable 

hyperplane of K" .  Then there exist q disjoint F-stable hyperplanes H i , . . . ,  Hq 

such that 

(K")F C_/-/, U.. .  U Hq. 

So we conclude 

xv c_ x n (K")~ c_ (x  n th) u.. .  u ( x  n H,) 

U zo,. 
1<_~_<q ~_<~_<to 

Here X N Ha -- Z~I U ... U Zat° and all Z ~  are non-trivial irreducible affine 

varieties of dimension k - 1. By (3.1) we conclude that g~ _< deg(X) and 

deg(Z~#) _< deE(X). So we obtain 

IX~l-<l U U (Z~)rl<-q'd'm~{l(Z~)FII a<-~<-q'x<-~<-g~} 
l_<a<g 1 <~__St. 

_< d k "qk 

and the theorem is proved. | 
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Now let char(K) -- 2 and consider an afflne space of even dimension. We also 

have to consider another type of surjective endomorphisms F : K 2n ~-} K 2n. As 

we will see later F4(K) is an afflne subvariety of K ~'~s= which is stable under 

such an endomorphism _P. 

We say that F : K 2" ~ K 2" is a twisted Frobenius morphism on K ~" if the 

following holds: 

- Let K 2n = U @ U be a decomposition of K 2" in two a~ne subspaces of 

dimension n. Let a: U ~ U, be the standard Frobenius morphism induced 

by z ~ z 2/ and ~-: U ~ U be the standard Frobenius morphism induced 

by z ~-~ z 21+l. Then for (u,u) E K 2n we have (u,v) I~ = (v~,ur). 

We will write c, ~- for c, r: K ~ K and also ~, ~': K 2" ~ K 2". Let us define 

q = 221+: and q0 = v/q. The aim of the following is to obtain a similar upper 

bound as in Theorem 7. First we want to study some properties of twisted 

Frobenius morphisms. 

PROPOSITION 8: Let F be a twisted F~obenius morpJzism on the af~ne variety 

K 2n, i.e. (u, v) F = (v ~', uT). Let us denote by Uq the set of fixed points of  F 2 

on U. Then 

(a) F is a homomorphism of additive groups. 

(b) ( K ~ " ) v  = {(u, ~)I (u, ~) = (~, ~), ~ e v,}. 

Proof." Both facts are straightforward. | 

Now we prove the analogue of Theorem 7 for irreducible subvarieties of K 2n. 

THEOREM 9: Let X C_ K 2" be an irreducib]e a~ne variety o[ dimension k and 

degree d. Then ]XF] <_ d.  (V"2.qo) k, where qo = vrq. 

Proof." We will prove the assertion by induction. If X is an irreducible variety of 

dimension 0 there is nothing to prove. So let us assume that the assertion holds 

for irreducible varieties of dimension less than k. Now we choose a basis for K 2" 

such that for the coordinates the following holds: 

( u 1 , . . . ,  u , ,  v l , . . . ,  v.)~ = ( ~ L - . . ,  ~ , , " ~ , "  " • • ., ~ ) -  

Define 

and 

• o} x, = { ( ~ , ~ , . . . , , , , , , , ~ , . . . , , , , , )  I "~ + "~ = 

a~ = {(.~,... ,,,.,~1,...,~.)I .~ + ,,~' = o). 
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Then (K2n)F C Hi and (K2n)F C H~, for all i -- 1 , . . . ,  n. Obviously 

deg(Hi) = V~'q0 and deg(H~) = ~ ' ~ ' q 0 .  

First let us assume that there is an i such that X ~ Hi. Then 

X N Hi = U Zj, 
j = l  

where each irreducible component Zj is of dimension k - 1. So as before the 

following holds: 

r 

(3.2) deg(Hi), deg(X) _> ~i (Hi ,X;  Zj). deg(Z/). 
j=l 

r As XF C (X (1 Hi)f C Uj=I(Zi)F we obtain the following: 

[ZF[ = [(X n Hi)F[ <_ ~ [(Zi)F[ and so by induction 
j = l  

T 

<_ - " Cx/2.q0)k-1 ~ d e g ( Z i )  then (3.2)implies 
j = l  

< ' 

and the assertion is proved in this case. If there exists an i such that X ~ B'~ 

then the same arguments as before lead to our assertion. So the case we still 

have to consider is X _C ni"__.l(Hi n H~). But a straightforward calculation shows 

that ni"=l(Hi n H~) = (K2n)F. The irreducible components of this affine variety 

are points and so this case only occurs for k = 0. This completes the proof. | 

It is remarkable that for twisted Frobenius morphisms the bound depends 

linearly on the degree of X, while for standard Frobenius morphisms the bound 

depends on deg(X) dim(x). 

The last statement we have to show in this section is that the Frobenius map F 

on the affine algebraic group G of type F4 such that GF = 2F4(q2) is induced by 

such a twisted Frobenius morphism. Therefore we consider the Lie algebra £: of 

type F4 defined over F2, the locally finite algebraic closed field of characteristic 

2. The corresponding Dynkin diagram is the following: 
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1 2 3 4 
o~e:: :~:e~o 

Let ¢ be the corresponding root system and II = {O~l ,Ot2,0t3 ,0t4} be a basis 

of ~. We will denote the non-trivial graph automorphism by 7. Furthermore we 

define ¢~ to be the set of all short roots and Ct to be the set of all long roots. 

Similarly we define H, = {Or3, a 4 } and lit = {al, as }. 

Let {ca, h# ] a E if, fl E rl} be a Chevalley basis of £. Then 

I =  [ e ~ , h a l a  E if,,/3 e lit] 

is an ideal of the Lie algebra £. Let us denote by : £ H £/I  the canonical 

Lie algebra epimorphism. 

There is also a map - : ff ~-* ¢I, defined by the following: for r E ff with 
4 r = Ei=lni • ai we define 

4 (Oti'Oti) "7 
F =  Z n i  • 

i=1 ( r , r )  " Oti" 

Then ¢~ = ~t and ¢I't = ~ ([1], p. 64). The same holds for II, and lit. By [16], 

10.1 there is an isomorphism of Lie algebras 0 : £/i" ~-* I defined through 

~0 
C r ~ e~,  

G is acting on £ and £/ I  and the action is well known ([1], p. 64). Let us consider 

the Frobenius map F such that GF = 2F4(q02). Then for rootelements we have 

the following ([1], prop. 12.3.3): 

{ z ~ U )  i f r  is a long root, 
xr(t)F = Xr--(t r) i f r  is a short root. 

Let B1 = {er, ho,, h,,, I r E e~s} be a basis of I and B2 = {~r, h~,, h,~2 I r E ¢Ih} 

be a basis of £ / / ,  where the ordering is chosen to be compatible with the map 

- : ~ ~ ~l. We define an additive function F*: I ~ £ / I  ~ I ~ £[I by the 

following: if we write an element w E I @ £/ I  in coordinates of the basis B1 tO B~, 

i.e. w = (A1,... ,A26,~ul,... ,#2s), then 

= = • ., #~6, At,..., A2~). 



78 T.S. WEIGEL Isr. J. Math. 

With the equations of [1], p. 64 we easily verify that for all g E I (B £ / / a n d  for 

all g E G, 

(3.3) (~..g)F* = ~F*.gF. 

G is acting as a group of linear transformations on I @ f~/I, so there is an 

embedding G ~ G L ( I  @ £/ / ) .  With respect to the basis Yl (J B2 an element 

g E G is represented by a matrix of the form 

,:(o o) 
Then (3.3) implies that 

and so we see that G is embedded in J~ 2"262 such that the Frobenius map F: G ~-* 

G with fixed point set 2F4(q02 ) is induced by a twisted Frobenius morphism. 

4. P r o o f  of  T h e o r e m  2 

Now we come to a theorem which is the keypoint of the proof of the main theorem. 

THEOREM 10: Let G be a simple simply connected a/gebraic group and F a 

~obenius  map on G such that CF is one of the groups listed in Table I. Let 

X denote the type of GF, such that GF ~ X(q). Furthermore let c be a 

semisimple element such that TF =< c > where TF is a maximal torus t'or 

GF of the type listed in Table 1. Then there exists a constant q(X)  which de- 

pends only on the type of GF such that, for q > q(X), t'or any reduced word 

w(, ,~)  = x ~ , ~ ,  . . . ~ . ~ r  o: length t < log(q), Genoa(c) g Van~o(aF), where 
Cena~(c) = {g ~ a~  I< c,g >= GF}. 

Before we prove this theorem we want to mention that Theorem 10 implies 

Theorem 2 at once. This can be seen as follows: Then for all but finitely many 

exceptional groups of Lie-type X(q) not of type 2B2 or 2G2, we obtain that 

C(X(q) )  >_ log(q), where C :  Q2 H / V  U {oc} is the function introduced in [18], 

and so the application of Theorem 3 will lead to our assertion. 

Proof: Let w = xaly/3~ . . .  x~ 'y  ~" be a reduced word of length less than log(q) 

and let us assume that for a fixed type X and infinitely many values for q we 

have that 

(4.1) Gena~(c) _ Vanw,(GF) where GF = X(q). 
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Theorem A of [20] implies that, for q >_ q(X), 

(4.2) IGen .( )l _> IGFI - IGFI" 

where 0 < ~ < 1 is a fixed real number depending only on the type X of GF. 
Now we want to bound the number of points in Van~,o(GF) using Theorems 

7 and 9. Let us consider a rational representation p: G ~ SL(s, K )  such that 

the Frobenius map is induced by a standard Frobenius morphism or twisted 

Frobenius morphism F* : K s2 ~-~ K s2. The degrees s of these representations 

are listed in Table 2. 

Table 2 

GF G Representation p Degree of p 

G2 G2 standard 7 

3D4 D4 D, ~ F,  ~ A2s 26 

F4 F4 standard 26 

Es En standard 27 

2E6 E6 E6 ~ E7 ~ A55 56 

E7 E7 standard 56 

Es Es standard 248 

2F4 F4 F, ~ A25 x A2s ~ A51 52 

For these embeddings we have the following: 

V~n~o(O) , G 

, SL(s,K) ~ K "  

Each arrow of this diagram denotes an injective morphism of varieties. We define 

Hii to be the afl:ine variety vanishing on the ( i , j ) th  entry of the function X 

wp(e)(X ) - 1 defined on SL(s, I ( ) .  By the Corollary of Theorem 5 we know that 

p(G) cannot vanish on wp(c) and so there exists (a, fl) such that  p(G) ~ Ha~. Let 

us set H = H ~ .  Each entry of the matrix wp(c)(X ) - 1 is a polynomial of total 

degree at most s. g in Xij and so the degree of H is also bounded by s.  ~. Let us 

consider H N p(G) = [.J~=l Zj, where each variety Zj is a non-trivial irreducible 

affine variety. We will write de = deg (p(G)). The degree is independent of 

the characteristic and depends only on the corresponding Dynkin diagram of G. 
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Then (3.1) implies that the number of irreducible components R is bounded by 

do • s • £. The dimension of all irreducible components is equal to k - 1, where 

k = dim (p(G)).  So if GF is not of type 2F4, Theorem 7 implies that  

IVan~,(OF)l = ]Van~.~,~ (p(G)) FI 
< J(H n p(a))FI 

R 

< I(Zi)FI 
j=l 

< ,e k . ( dG . s) k . qk-1. 

So we see that [Van~,(GF)l = O(log(q)kq k - l )  and, by (4.2), IGenGF(c)l = 

q~ - o(qk). So we conclude that (4.1) cannot hold for infinitely many q's and 

this leads to a contradiction in this case. If GF is of type 2F4 then we obtain the 

inequality 

IVan~°( GF)I < ( VS)  ~-1 .  e ~ . (dG . s)2 . q~-~ 

where q0 = v/q. In this case we obtain IVanw°(GF)[ = O(log(q0)2g -1) and 

IGenaF(c)l = qk o - o(qko). This leads to a contradiction as well and the proof is 

complete. | 
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