RESIDUAL PROPERTIES OF FREE GROUPS, III

BY

T. S. WEIGEL*

 $Mathematicsches Institut der University if Freiberg$ *AIberstr. \$3b, D-7800 Freiberg, Germany*

ABSTRACT

In this paper we want to prove the following theorem: Let χ be an infinite set of non-abelian finite simple groups. Then the free group F_2 on 2 generators is residually χ . This answers a question first posed by W. Magnus and later by A. Lubotzky [9], Yu. Gorchakov and V. Levchuk [4].

1. Introduction

A group G is called residually X if the intersection of all normal subgroups $N \triangleleft G$ such that $G/N \in \mathcal{X}$ is the trivial group. In this paper we consider a certain residual property of free groups F_n on n generators $(n \geq 2)$. We consider the case in which every group in X is a non-abelian finite simple group and X is infinite. For these classes we prove the following theorem:

THEOREM 1: Let X be any infinite set of non-abelian finite simple groups. Then the free group F_2 on 2 generators is residually \mathcal{X} .

This answers a question first posed by W. Magnus and later by A. Lubotzky [9], Yu. Gorchakov and V. Levchuk [4]. As every non-abelian free group F_n is residually ${F_2}$ [14], the transitivity implies that F_n is also residually X. So the theorem still holds for any free group F_n , where n is a cardinal number greater than 1.

To prove Theorem 1 we show the following:

^{*} The author gratefully acknowledges financial support by the Deutsche Forschungsgemeinschaft.

Received December 2, 1990 and in revised form May 9, 1991

THEOREM 2: *Let Z* be an *intlnite set of exceptional groups* of Lie *type such that all groups are of the* same *type. Then the* free group F2 of rank 2 *is residually Z.*

Then the proof of Theorem 1 can be carried out as follows:

Proof of Theorem 1: Let X be any infinite set of non-abelian finite simple groups. Then the pidgeon-hole principle and the classification of finite simple groups imply that one of the following has to hold:

- (a) X contains an infinite set of alternating groups.
- (b) X contains an infinite set of classical groups of Lie type
- (c) $\mathcal X$ contains an infinite set of exceptional groups of Lie type.

In case (a) the assertion was proved by R. Katz and W. Magnus [6]. In [18] and [19] the assertion was proved for classes of groups $\mathcal X$ satisfying (b). So the only case we have to consider is (c). The pidgeon-hole principle implies that it is sufficient to consider infinite classes of groups Z consisting of exceptional groups such that each group is of the same type. Then Theorem 2 implies the assertion.

l

For some certain classes of finite simple groups it has already been known for some time that the desired assertion holds. These classes are of the form ${X(S) | S \in \mathcal{M}}$ where X is some scheme of twisted or untwisted Chevalley groups, M is a set of finite fields and there exists a ring R such that each element of M is a homomorphic image of R and the intersection of all the kernels of the homomorphisms of R onto an element of M is trivial. Now this ring R should have the following property: X is defined over R, one can find a subgroup $F \leq$ $X(R)$ which is isomorphic to the free group on 2 generators and $\Psi_S^* : F \mapsto X(S)$, where Ψ_S^* is induced by $\Psi_S : R \mapsto S$, is onto for all but finitely many $S \in \mathcal{M}$. Under this assumption it is an obvious consequence that the free group F_2 on 2 generators is residually $\{X(S)|S \in \mathcal{M}\}.$

For certain classes $\{X(S)|S \in \mathcal{M}\}\$ and some polynomial ring R an explicit subgroup $F \leq X(R)$ has been constructed, such that $\Psi_S^* : F \mapsto X(S)$ is onto for all but finitely many $S \in \mathcal{M}$ ([7],[8],[15],[22]).

In [9] A. Lubotzky considers the case where X and R can be chosen, such that *X(R)* has the "strong approximation property" for every Zarisky dense subgroup [12],[21]. By a theorem of J. Tits it is known that $X(R)$ contains a Zarisky dense subgroup of F isomorphic to the free group of rank 2 and so the desired result follows.

Now in the cases we are considering we cannot take a ring R for which a "strong" approximation theorem" is known. For a scheme of exceptional type it is difficult to find a subgroup $F \in X(R)$ isomorphic to the free group on 2 generators, such that Ψ_S^* : $F \mapsto X(S)$ is onto for all but finitely many S. The only cases in which this attempt has been successful so far are if X is of type 2B_2 , 2G_2 or A_n .

We choose a different approach which was already used to obtain the desired result for classes satisfying the condition (b) ([17],[18],[19]). The background of the following theorems is to obtain a lower bound for $C(G_F)$, where $C: \mathcal{G}_2 \mapsto$ $\mathbb{N} \cup \{\infty\}$ is the function defined on any 2-generated group introduced in [18]. We recall the definition. Let G be a group generated by two elements. Let $M_G \subseteq F_2$ be the set of all words in x and y vanishing on all pairs of elements s and t of G , for which $\langle s, t \rangle = G$ is satisfied. Then we define

$$
C(G) = \min\Bigg\{\ell(w) \mid w \in M_G \setminus \{1\}\Bigg\}, \text{where } \min\{\quad\} = \infty.
$$

We see easily that the definition is independent of the generators $x, y \in F_2$. The following theorem gives the connection between the set of values of this function on a class of 2-generated groups X and residual properties for the free group F_2 on 2 generators ([18], theorem 2).

THEOREM 3: F_2 is residually $\mathcal{X} \Longleftrightarrow \{C(G) | G \in \mathcal{X}\}\)$ is an unbounded set.

All notations used in the following are standard and can be found in [1], [2] and [3]. For each finite simple group of Lie type we look at the corresponding covering (central extension) G_F which is the fixed point set of some Frobenius map defined on an algebraic simple simply connected group G . For each of these groups G_F we choose an element $c \in G_F$ which generates a certain cyclic maximal torus T_F . The type and the order are listed in Table 1. The case that $\mathcal Z$ is a class consisting of groups of type 2B_2 or 2G_2 is not considered in the following, as in this case Theorem 2 is already proved in [7] and [8].

The proof of theorem 2 will be found in section 4.

2. The Verbal Topology and Zariski Topology for **Afflne Algebraic Groups**

Let G be an affine algebraic group. Then it carries the well known Zariski topology. Here the closed sets are exactly the affine subvarieties of G . On

68 T.S. WEIGEL Isr. J. Math.

any group G there can be defined the verbal topology as follows: Consider a reduced word $w \in F_n$ in the free group F_n on n generators. Now we can interpret

G_F	Type of $T_F[2]$	$ T_F $	Remark
$G_2(q)$	G_2	$q^2 - q + 1$	
${}^3D_4(q)$		$q^4 - q^2 + 1$	
$F_4(q)$	F_{4}	$q^4 - q^2 + 1$	
$E_6(q)$	$E_6(a_1)$	$q^6 + q^3 + 1$	
${}^{2\!}E_6(q)$		$q^6 - q^3 + 1$	
$E_7(q)$	E_7	$(q+1)(q^6-q^3+1)$	$q \equiv 0, 1 \mod 3$
	$E_6(a_1)$	$(q-1)(q^6+q^3+1)$	$q \equiv 2 \mod 3$
$E_8(q)$	E_{8}	$q^{8} + q^{7} - q^{5} - q^{4} - q^{3} + q + 1$	
${}^{2}F_4(2^{2k+1})$		$q_0^4 + \sqrt{2} q_0^3 + q_0^2 + \sqrt{2} q_0 + 1$	$q_0 = 2^k \sqrt{2}$

Table 1

 $n-1$ of the generators as constants (elements in the group G) and one as an indeterminate, e.g. for $c_1,\ldots,c_r \in \{-g_1,\ldots,g_{n-1}\} \leq G$ consider $w_{g_1,\ldots,g_{n-1}}(x) =$ $x^{\alpha_1}c_1 \ldots x^{\alpha_r}c_r$. The vanishing set of $w_{g_1,\ldots,g_{n-1}}$ is now defined by

$$
\text{Van}_{w_{g_1,\ldots,g_{n-1}}}(G) = \{x \in G \mid w(x) = 1\}.
$$

The vanishing sets for all reduced words and any set of constants form a subbase of the closed sets of the verbal topology. We also see that if G is an affine algebraic group then every set which is closed in the verbal topology is also closed in the Zariski topology. Next we prove that if G is a simple algebraic group of the type listed in Table 1 the group G cannot be equal to a certain vanishing set. Therefore we need a theorem concerning certain free products of groups in $PGL(2, \mathbf{F}_q(x))$.

THEOREM 4: Let c be a non-trivial semisimple element contained in a split torus of PGL(2, F_q). Then there exists an element $t \in \text{PGL}(2, \mathbf{F}_q(x))$ (already in $PSL(2, \mathbf{F}_q(x))$ such that $\langle c, t \rangle \cong \langle c \rangle$ II \mathbb{Z} , the free product of a cyclic subgroup of order $\text{ord}(c)$ and the free *cyclic* group Z .

Proof: For $PGL(2, \mathbf{F}_q(x))$ we have the natural action on the projective line $F_q(x) \cup \{\infty\}$. Without loss of generality we may assume that c is fixing ∞ and 0. Furthermore we may assume that c is acting on $\mathbf{F}_q(x)$ by $p \cdot c = p \cdot \xi$, where $\xi \in \mathbf{F}_{q}^{*}$ is an element of order ord (c) .

On $F_q[x]$ there is defined the degree function ∂ which can be extended to $F_q(x)$ by:

$$
\partial\left(\frac{f}{g}\right)=\partial(f)-\partial(g), \quad \text{for } f,g \in \mathbf{F}_q[x].
$$

Here $\partial(0)$ is defined to be $-\infty$. This function can be made into a valuation on $F_q(x)$ if we define $|p| = \exp(\partial(p))$. Then we obtain the usual equality and inequality, for $a, b \in \mathbf{F}_q(x)$:

$$
|a + b| \le |a| + |b|,
$$

$$
|a \cdot b| = |a| \cdot |b|.
$$

We define open balls and circles as usual:

$$
B_r(z) = \{ \theta \in \mathbf{F}_q(x) | |z - \theta| < r \} \quad \text{and } k_r(z) = \{ \theta \in \mathbf{F}_q(x) | |z - \theta| = r \}.
$$

By definition c leaves the valuation |.| invariant, that means $|p.c| = |p|$, for all $p \in \mathbf{F}_q(x)$.

For all $n \in \mathbb{N}$, $n \geq 2$, we have: $|x^n - x^n c^k| = e^n$, where k ranges over the set $\{1, \ldots, \text{ord}(c) - 1\}$. Therefore for two points z, z_0 where $z \in B_1(x^n)$, $z_0 \in B_1(x^n)$.c^k, we get the following inequality:

$$
|z - z_0| = |z - x^n - z_0 + x^n \cdot c^k + x^n - x^n \cdot c^k|
$$

\n
$$
\geq |x^n - x^n \cdot c^k| - (|z - x^n| + |z_0 - x^n \cdot c^k|)
$$

\n
$$
\geq e^n - 2.
$$

So the two points z and z_0 always have positive distance, and this implies that c is an element all of whose non-trivial powers c^k are sending $B_1(x^n)$ into the complement $\overline{B_1(x^n)}^c$. To apply the ping-pong lemma of Lyndon and Ullman [10], we have to look for an element t all of whose non-trivial powers t^k send $\overline{B_1(x^n)}^c$ into $B_1(x^n)$. Therefore we look for an element $s \in \mathrm{PSL}(2, \mathbf{F}_q(x))$ for which $\overline{B_1(0)}^c.s^k \subseteq B_1(0)$ holds for every $k \neq 0$. Take s to be represented by the matrix

$$
\left(\begin{array}{cc} x & 0 \\ x^n & x^{-1} \end{array}\right).
$$

Then the powers s^k , $|k| \geq 2$ have the form

$$
s^k = \begin{pmatrix} x^k & 0 \\ p_k(x) & x^{-k} \end{pmatrix},
$$

where

$$
p_k(x) = \mathrm{sgn}(k)(x^{n-(|k|-1)} + x^{n-(|k|-3)} + \ldots + x^{n+(|k|-3)} + x^{n+(|k|-1)}).
$$

Therefore we have

$$
f.s^k = \frac{f \cdot x^k}{p_k(x)f + x^{-k}} = \frac{x^k}{p_k(x) + \frac{1}{x^k f}}
$$

and this implies for $|f| \geq 1$

$$
|f.s^{k}| = |x^{k}| |p_{k}(x) + \frac{1}{x^{k} f}|^{-1}
$$

\n
$$
\leq e^{|k|} (e^{n + (|k|-1)})^{-1} = e^{-n+1}.
$$

So for $n \geq 2$, s is an element that has the property that $\overline{B_1(0)}^c.s^k \subseteq B_1(0)$ for $k \neq 0$ and s has infinite order. Let us define

$$
t=\begin{pmatrix} 1 & -x^n \\ 0 & 1 \end{pmatrix} s \begin{pmatrix} 1 & x^n \\ 0 & 1 \end{pmatrix}.
$$

Then t has infinite order and $\overline{B_1(x^n)}^c.t^k \subseteq B_1(x^n)$ for $k \neq 0$. Now we can apply the ping-pong lemma ([10], lemma A) to the group $\langle c, t \rangle$ and this completes the proof. \Box

The next point we have to consider are reduced words in two generators and their vanishing set in algebraic groups. Let $w = x^{\alpha_1}y^{\beta_1} \cdots x^{\alpha_r}y^{\beta_r} \in F_2$. Then for $c \in G$ we define $w_c(x) = x^{\alpha_1} c^{\beta_1} \cdots x^{\alpha_r} c^{\beta_r}$. The next theorem considers algebraic groups on which the functions w_c do not vanish, if the element c is semisimple and one further condition is satisfied.

THEOREM 5: Let c be a non-central semisimple element of the algebraic group G *defined over* $\overline{F_q}$. Assume further that there exists a reductive subgroup H such *that* $c \in H$ and $[H, H] \cong (P)SL(2, \overline{F_q})$. Let T be a maximal torus containing c. For the root $\alpha \in \Phi(H) \subset X(T)$ assume that $\alpha(< c>) \cong < c > Z(G)/Z(G)$. Then for any non-trivial reduced word w_c in two generators with constants in

 $\langle c \rangle \langle Z(G), i.e. \ x^{\alpha_1} c^{\beta_1} \cdots x^{\alpha_r} c^{\beta_r}, \text{ with } \beta_i \in \{1, \ldots, \text{ord}(cZ(G))\},\text{ the vanishing }$ set $Van_{w_c}(G)$ *is not equal to the whole group G.*

Proof: Assume that $G = \text{Van}_{w_c}(G)$. Then we also have $H = \text{Van}_{w_c}(H)$. Let us define

$$
\rho: H \longmapsto H/Z(H) \cong [H,H]/[H,H] \cap Z(H) \cong \mathrm{PGL}(2,\overline{\mathbf{F}_q}).
$$

Then we also have $\rho(H) = \text{Van}_{\mathbf{w}_{\rho(e)}}(\rho(H))$. Furthermore $w_{\rho(e)}(x)$ is a non-trivial word of positive length ℓ . This follows easily because we assumed that

$$
\alpha()\cong Z(G)/Z(G).
$$

Let $Z_1 \cong \text{PGL}(2, \mathbf{F}_{q^m})$ be a subgroup of $\rho(H)$ containing $\rho(c)$ such that $\rho(c)$ is even contained in a maximally split torus of Z_1 . Then we find a series of subgroups $Z_k \cong \mathrm{PGL}(2, \mathbf{F}_{q^{mk}}), Z_k \leq Z_{k+1}$ and $\rho(c)$ lies in a maximally split torus of Z_k for all k's. By Theorem 4 we can find a subgroup K of PGL $(2, \mathbf{F}_{q^m}(x))$ isomorphic to $\langle \rho(c) \rangle$ II $\mathbb Z$ containing $\rho(c)$. So for each k we have the following:

$$
Z_1 \cong \mathrm{PGL}(2, F_{q^m}) \longleftarrow \langle \rho(c) \rangle
$$

\n
$$
\downarrow \qquad \qquad \downarrow
$$

\n
$$
\mathrm{PGL}(2, \mathbf{F}_{q^m}(x)) \longleftarrow K \cong \langle \rho(c) \rangle \coprod \mathbb{Z} \xrightarrow{\phi_k} Z_k \cong \mathrm{PGL}(2, \mathbf{F}_{q^{mk}})
$$

\n
$$
\longrightarrow \mathrm{PGL}(2, \overline{\mathbf{F}_q})
$$

where each arrow means inclusion except the map $\phi_k : K \mapsto Z_k$, which is a morphism of the finitely generated subgroup K of PGL $(2, \mathbf{F}_{q^m}(x))$ in PGL $(2, \mathbf{F}_{q^{m,k}})$ by sending x to a primitive element in $\mathbf{F}_{q^{mk}}$. Let t be a generator of $\mathbb{Z} < K$. Then for each k we get: $\phi_k(t) \in \text{Van}_{w_{\rho(\epsilon)}}(Z_k)$. As K is residually $\{\phi_k(K) \mid k \geq k_0\},$ $w_{\rho(c)}(t) \in K$ has to be the trivial element in K. So $w_a(b) \in < a, b> \cong F_2$ has to be contained in $\langle (a^{\kappa})^z | z \in F_2 \rangle$ where $\kappa = \text{ord}(\rho(c))$. But this is impossible by the choice of w and the proof is complete.

For our purpose we have to apply Theorem 5 to the generating element of the cyclic torus *TF.* The following proposition shows that this is possible.

PROPOSITION 6: Let G be a simple algebraic group and $F: G \mapsto G$ a Frobenius map such that G_F is one of the groups listed in Table 1. Let T be an F-stable maximal torus for G such that T_F is of the types listed in Table 1. Let $w \in W$ be *an element such that T is obtained* from *the maximally split torus To by twisting* with the element w. Then there exists a root $\alpha \in \Phi(T_0)$ such that the following *holds:*

(a) If G_F is of type G_2 for any root $\alpha \in \Phi(G_2)$ we obtain

$$
\langle w_\alpha^x \mid x \in F \langle w \rangle \rangle \cong S_3;
$$

if G_F *is of type* F_4 *and* $\alpha \in \Phi$ *is a long root then*

$$
\langle w_\alpha^x \mid x \in \langle F.w \rangle \rangle = W(D_4).3 \langle W(F_4).
$$

If G_F is of type ³D₄, ²F₄, ²E₆, E₆, E₇ or E₈, then there exists a root $\alpha \in \Phi$ such that $W = \langle w_{\alpha}^x | x \in \langle F.w \rangle \rangle$.

(b) Let $g \in G$ be such that $\pi(F(g)g^{-1}) = w$ and $T = T_0^g$, where $\pi : N_G(T_0) \mapsto$ W is the canonical epimorphism on the Weyl group. Then $\ker_{T_0}(\alpha) \cap$ $(T_F)^{g^{-1}} \leq Z(G).$

Proof: (a) If G_F is not of type 2F_4 this is an immediate consequence of the propositions 6, 7, 8, 10 and 11 of [20]. So only the case that G_F is of type 2F_4 has to be considered. Let $\alpha \in \Phi$ be any root and assume that

$$
W_0 = \langle w_\alpha^x \mid x \in F w \rangle
$$

is a proper subgroup of $W(F_4)$. As W_0 is generated by reflections W_0 has to be a Weyl subgroup of W with corresponding root system $\Psi = {\gamma \in \Phi \mid w_{\gamma} \in W_0}.$ Then Ψ is invariant under $F.w.$ By theorem 5 of [20] there is a proper F -stable reductive subgroup H of G containing T. So we conclude that $T_F < H_F < G_F$. But this is a contradiction to the main result of [11] and our assertion holds.

(b) Here we use the fact that $(T_F)^{g^{-1}} = \text{Fix}_{T_0}(F.w)$ (cf. Prop. 3.3.6 of [3]) and $\ker_{T_0}(\alpha) \leq \operatorname{Fix}_{T_0}(w_\alpha)$. Therefore if G_F is not of type G_2 or F_4 we have:

$$
\ker_{T_0}(\alpha) \cap (T_F)^{g^{-1}} \leq \operatorname{Fix}_{T_0}(w_\alpha) \cap \operatorname{Fix}_{T_0}(F.w) = \operatorname{Fix}_{T_0}(W, \langle F \rangle).
$$

So we have to look at $S = \text{Fix}_{T_0}(W, \langle F \rangle) \leq (T_F)^{g^{-1}}$. Let $t \in S$. Then for all $\gamma \in \Phi(T_0)$ the following holds:

$$
\gamma(t)=\gamma(t^{w_{\gamma}})=\gamma^{w_{\gamma}}(t)=\gamma(t)^{-1}.
$$

So $S/Z(G_F)$ has to be 2-group. But in all the cases except the case that G_F is of type E_7 , T_F is of odd order and this already implies the assertion. If G_F is of type E_7 we can use the fact that $|S|$ has to divide the order of any maximal torus of *GF* and so we obtain

$$
|S| \gcd ((q+1)(q^6-q^3+1), (q-1)(q^6+q^3+1)) = \gcd(q-1,2)
$$

and this leads to our assertion in this case. If G_F is of type F_4 then similar arguments lead to the case that $Fix_{T_0}(W(D_4).3. < F >)$ equals the center of ${}^{3}D_{4}(q)$ which is trivial and so the proposition holds in this case as well. If G_F is of type G_2 the argumentation is a little bit different: Let S be 3-Sylow subgroup of $(T_F)^{g^{-1}}$. Then $|S| = 3$ or $|S| = 1$. If S is non-trivial, S is also non-central and so there exists a root α such that $S \nleq \ker_{T_0}(\alpha)$. Let $W_0 = \langle w_\alpha^x | x \in \langle F.w \rangle \rangle$ and $\Psi = {\gamma \in \Phi \mid w_{\gamma} \in W_0}$. Then Ψ is a root system of type A_2 and so ker $T_0(W_0)$ is isomorphic to \mathbb{Z}_3 or trivial. But in both cases we obtain $\ker_{T_0}(W_0) \cap (T_F)^{g^{-1}} = 1$. **|**

The statement we need in one of the following sections is the following:

COROLLARY: Let G be a simple algebraic group and F a Frobenius map on G such that G_F is one of the groups of Table 1. Let c be a non-central element that generates a maximal torus T_F of the type listed in Table 1. Then for any *word* $v = x^{\alpha_1}y^{\beta_1} \cdots x^{\alpha_r}y^{\beta_r}$ in two generators with $\beta_i \in \{1, \ldots, \text{ord}(cZ(G))\}$ the *vanishing set* $\text{Van}_{w_c}(G)$ *is a proper subset of G.*

Proof: For each group G let $\alpha \in \Phi$ be a root that satisfies the assertion of Proposition 6(b) and define $H = \langle U_{\alpha}, U_{-\alpha}, T_0 \rangle^g$. Then $\ker_{T_0}(\alpha) \cap (T_F)^{g^{-1}} \leq$ $Z(G)$ and this implies that $\alpha(T_F) \cong T_FZ(G)/Z(G)$. Then Theorem 5 implies the assertion.

3. The Number of Rational Points on an Affine Variety

Let K be a locally finite algebraically closed field of positive characteristic and F a Frobenius automorphism of K with q fixed points on K . We denote the induced map $K^n \mapsto K^n$ also by F. In the following we want to consider an irreducible affine variety $X \subseteq \mathbb{K}^n$. We want to obtain an upper bound for $|X_F|$, the number of F -rational points on X . Therefore we define the degree for affine varieties in the following way: Let us consider the embedding $\sigma : K^n \mapsto P^n$ of K^n in the *n*-dimensional projective space P^n such that $\sigma(K^n)$ is a dense open subset of P^n (see [13], p.22). Let us define $\overline{\sigma}(X) = \overline{\sigma(X)}$, where $\overline{\sigma(X)}$ is the Zariski closure of the image of X in $Pⁿ$. Then for any irreducible affine variety $X \subseteq K^n$ we define: $deg(X) = deg(\overline{\sigma}(X))$. This is a well-defined function on the set of irreducible affine varieties ([13], chapter 5). Furthermore let H be an irreducible hypersurface in $Kⁿ$. Then $\overline{\sigma}(H)$ is an irreducible hypersurface in P^n . If $X \nsubseteq H$ then the intersection $\overline{\sigma}(X) \cap \overline{\sigma}(H) = Z_1 \cup \cdots \cup Z_r$ is a variety all of whose irreducible components Z_i have the same dimension. In this case we obtain the following:

$$
\deg\big(\overline{\sigma}(X)\big)\cdot\deg\big(\overline{\sigma}(H)\big)=\sum_{1\leq k\leq r}i\big(\overline{\sigma}(X),\overline{\sigma}(H);Z_k\big)\cdot\deg(Z_k)
$$

where $i(\bar{\sigma}(X),\bar{\sigma}(H); Z_k) \in \mathbb{N}$ are the intersection multiplicities (see [5], p. 53, theorem 7.7). In the affine case this implies the following: Let $H \subset K^n$ be an affine hyperplane of K^n . Let $X \cap H = Y_1 \cup \cdots \cup Y_r$, where the Y_i 's are the non-trivial irreducible components of $X \cap H$. Then

$$
r \leq \deg(X) \cdot \deg(H) \quad \text{and}
$$

(3.1)
$$
\deg(Y_i) \leq \deg(X) \cdot \deg(H) \quad \text{for all} \quad i = 1, \dots, r.
$$

This leads to the following

THEOREM 7: Let X be an *irreducible affine variety over K of dimension k and degree d. Then* $|X_F| \leq d^k \cdot q^k$.

Proof: We will prove the assertion by induction. If the dimension of X equals zero X is a point and there is nothing to prove. So let us assume that the inequality holds for every irreducible affine variety of dimension less than k . We may also assume that $X \subseteq K^n$, but that X is not contained in any F-stable hyperplane of $Kⁿ$. Then there exist q disjoint F-stable hyperplanes H_1, \ldots, H_q such that

$$
(K^n)_F\subseteq H_1\cup\cdots\cup H_q.
$$

So we conclude

$$
X_F \subseteq X \cap (K^n)_F \subseteq (X \cap H_1) \cup \ldots \cup (X \cap H_q)
$$

\n
$$
\subseteq \bigcup_{1 \leq \alpha \leq q} \bigcup_{1 \leq \beta \leq \ell_\alpha} Z_{\alpha\beta}.
$$

Here $X \cap H_{\alpha} = Z_{\alpha 1} \cup \cdots \cup Z_{\alpha \ell_{\alpha}}$ and all $Z_{\alpha \beta}$ are non-trivial irreducible affine varieties of dimension $k - 1$. By (3.1) we conclude that $\ell_{\alpha} \leq \deg(X)$ and $deg(Z_{\alpha\beta}) \leq deg(X)$. So we obtain

$$
|X_F| \leq |\bigcup_{1 \leq \alpha \leq q} \bigcup_{1 \leq \beta \leq \ell_\alpha} (Z_{\alpha\beta})_F| \leq q \cdot d \cdot \max\left\{|(Z_{\alpha\beta})_F|\big|1 \leq \alpha \leq q, 1 \leq \beta \leq \ell_\alpha\right\}
$$

$$
\leq d^k \cdot q^k
$$

and the theorem is proved. \Box

Now let $char(K) = 2$ and consider an affine space of even dimension. We also have to consider another type of surjective endomorphisms $F: K^{2n} \mapsto K^{2n}$. As we will see later $F_4(K)$ is an affine subvariety of $K^{2.26}$ which is stable under such an endomorphism F .

We say that $F: K^{2n} \mapsto K^{2n}$ is a twisted Frobenius morphism on K^{2n} if the following holds:

- Let $K^{2n} = U \oplus U$ be a decomposition of K^{2n} in two affine subspaces of dimension n. Let $\sigma: U \mapsto U$, be the standard Frobenius morphism induced by $x \mapsto x^{2^f}$ and $\tau: U \mapsto U$ be the standard Frobenius morphism induced by $x \mapsto x^{2^{f+1}}$. Then for $(u, v) \in K^{2n}$ we have $(u, v)^F = (v^{\sigma}, u^{\tau})$.

We will write σ, τ for $\sigma, \tau: K \mapsto K$ and also $\sigma, \tau: K^{2n} \mapsto K^{2n}$. Let us define $q = 2^{2f+1}$ and $q_0 = \sqrt{q}$. The aim of the following is to obtain a similar upper bound as in Theorem 7. First we want to study some properties of twisted Frobenius morphisms.

PROPOSITION 8: Let F be a *twisted Frobenius morphism* on the affine variety K^{2n} , i.e. $(u, v)^F = (v^{\sigma}, u^{\tau})$. Let us denote by U_{σ} the set of fixed points of F^2 on U. Then

- *(a) F is a homomorphism of additive* groups.
- **(b)** $(K^{2n})_F = \{(u, v) | (u, v) = (\xi, \xi^{\tau}), \xi \in U_g\}.$

Proof: Both facts are straightforward.

Now we prove the analogue of Theorem 7 for irreducible subvarieties of K^{2n} .

THEOREM 9: Let $X \subseteq K^{2n}$ be an *irreducible affine variety of dimension* k and *degree d.* Then $|X_F| \le d \cdot (\sqrt{2} \cdot q_0)^k$, where $q_0 = \sqrt{q}$.

Proof: We will prove the assertion by induction. If X is an irreducible variety of dimension 0 there is nothing to prove. So let us assume that the assertion holds for irreducible varieties of dimension less than k. Now we choose a basis for K^{2n} such that for the coordinates the following holds:

$$
(u_1,\ldots,u_n,v_1,\ldots,v_n)^F=(v_1^{\sigma},\ldots,v_n^{\sigma},u_1^{\tau},\ldots,u_n^{\tau}).
$$

Define

$$
H_i = \{(u_1, \ldots, u_n, v_1, \ldots, v_n) \mid u_i^{\tau} + v_i = 0\}
$$

and

$$
H'_{i} = \{(u_1, \ldots, u_n, v_1, \ldots, v_n) \mid u_i + v''_i = 0\}.
$$

Then $(K^{2n})_F \subseteq H_i$ and $(K^{2n})_F \subseteq H'_i$, for all $i = 1, \ldots, n$. Obviously

$$
\deg(H_i) = \sqrt{2} \cdot q_0 \quad \text{and} \ \deg(H'_i) = \sqrt{1/2} \cdot q_0.
$$

First let us assume that there is an i such that $X \nsubseteq H_i$. Then

$$
X\cap H_i=\bigcup_{j=1}^r Z_j,
$$

where each irreducible component Z_j is of dimension $k-1$. So as before the following holds:

(3.2)
$$
\deg(H_i) \cdot \deg(X) \ge \sum_{j=1}^r i(H_i, X; Z_j) \cdot \deg(Z_j).
$$

As $X_F \subseteq (X \cap H_i)_F \subseteq \bigcup_{i=1}^r (Z_i)_F$ we obtain the following:

$$
|X_F| = |(X \cap H_i)_F| \le \sum_{j=1}^r |(Z_j)_F| \text{ and so by induction}
$$

$$
\le (\sqrt{2} \cdot q_0)^{k-1} \sum_{j=1}^r \deg(Z_j) \text{ then (3.2) implies}
$$

$$
\le \deg(X) \cdot (\sqrt{2} \cdot q_0)^k
$$

and the assertion is proved in this case. If there exists an i such that $X \nsubseteq H'_{\epsilon}$ then the same arguments as before lead to our assertion. So the case we still have to consider is $X \subseteq \bigcap_{i=1}^n (H_i \cap H_i')$. But a straightforward calculation shows that $\bigcap_{i=1}^n (H_i \cap H'_i) = (K^{2n})_F$. The irreducible components of this affine variety are points and so this case only occurs for $k = 0$. This completes the proof.

It is remarkable that for twisted Frobenius morphisms the bound depends linearly on the degree of X , while for standard Frobenius morphisms the bound depends on deg $(X)^{\dim(X)}$.

The last statement we have to show in this section is that the Frobenius map F on the affine algebraic group G of type F_4 such that $G_F = {}^2F_4(q_0^2)$ is induced by such a twisted Frobenius morphism. Therefore we consider the Lie algebra $\mathcal L$ of type F_4 defined over $\overline{F_2}$, the locally finite algebraic closed field of characteristic 2. The corresponding Dynkin diagram is the following:

 $\frac{1}{2}$ $\frac{2}{2}$ $\frac{3}{2}$ $\frac{4}{2}$

Let Φ be the corresponding root system and $\Pi = {\alpha_1, \alpha_2, \alpha_3, \alpha_4}$ be a basis of Φ . We will denote the non-trivial graph automorphism by γ . Furthermore we define Φ_{σ} to be the set of all short roots and Φ_{l} to be the set of all long roots. Similarly we define $\Pi_s = {\alpha_3, \alpha_4}$ and $\Pi_l = {\alpha_1, \alpha_2}.$

Let $\{e_{\alpha}, h_{\beta} \mid \alpha \in \Phi, \beta \in \Pi\}$ be a Chevalley basis of \mathcal{L} . Then

$$
I = [e_{\alpha}, h_{\beta} \mid \alpha \in \Phi_s, \beta \in \Pi_l]
$$

is an ideal of the Lie algebra L. Let us denote by $\tilde{i}: \mathcal{L} \mapsto \mathcal{L}/I$ the canonical Lie algebra epimorphism.

There is also a map $\bar{ } : \Phi \mapsto \Phi$ defined by the following: for $r \in \Phi$ with $r = \sum_{i=1}^{4} n_i \cdot \alpha_i$ we define

$$
\overline{r} = \sum_{i=1}^{4} n_i \cdot \frac{(\alpha_i, \alpha_i)}{(r, r)} \cdot \alpha_i^{\gamma}.
$$

Then $\overline{\Phi_s} = \Phi_l$ and $\overline{\Phi_l} = \Phi_s$ ([1], p. 64). The same holds for Π_s and Π_l . By [16], 10.1 there is an isomorphism of Lie algebras $\theta : \mathcal{L}/I \mapsto I$ defined through

$$
\tilde{e}_r^{\theta} = e_{\overline{r}},
$$

$$
\tilde{h}_r^{\theta} = h_{\overline{r}}.
$$

G is acting on $\mathcal L$ and $\mathcal L/I$ and the action is well known ([1], p. 64). Let us consider the Frobenius map F such that $G_F = {}^2F_4(q_0^2)$. Then for rootelements we have the following $([1], \text{prop. } 12.3.3)$:

$$
x_r(t)^F = \begin{cases} x_{\overline{r}}(t^{\sigma}) & \text{if } r \text{ is a long root,} \\ x_{\overline{r}}(t^{\tau}) & \text{if } r \text{ is a short root.} \end{cases}
$$

Let $B_1 = \{e_r, h_{\alpha_4}, h_{\alpha_3} \mid r \in \Phi_s\}$ be a basis of I and $B_2 = \{\tilde{e}_r, \tilde{h}_{\alpha_1}, \tilde{h}_{\alpha_2} \mid r \in \Phi_l\}$ be a basis of \mathcal{L}/I , where the ordering is chosen to be compatible with the map $\bar{\phi}: \Phi_{s} \mapsto \Phi_{l}$. We define an additive function $F^{*}: I \oplus \mathcal{L}/I \mapsto I \oplus \mathcal{L}/I$ by the following: if we write an element $w \in I \oplus \mathcal{L}/I$ in coordinates of the basis $B_1 \cup B_2$, i.e. $w = (\lambda_1, ..., \lambda_{26}, \mu_1, ..., \mu_{26})$, then

$$
w^{F^*}=(\lambda_1,\ldots,\lambda_{26},\mu_1,\ldots,\mu_{26})^{F^*}=(\mu_1^{\sigma},\ldots,\mu_{26}^{\sigma},\lambda_1^{\tau},\ldots,\lambda_{26}^{\tau}).
$$

With the equations of [1], p. 64 we easily verify that for all $\ell \in I \oplus \mathcal{L}/I$ and for all $g \in G$,

$$
(3.3) \qquad (\ell.g)^{F^*} = \ell^{F^*}.g^F.
$$

G is acting as a group of linear transformations on $I \oplus \mathcal{L}/I$, so there is an embedding $G \hookrightarrow GL(I \oplus \mathcal{L}/I)$. With respect to the basis $\mathcal{B}_1 \cup \mathcal{B}_2$ an element $q \in G$ is represented by a matrix of the form

$$
g=\left(\begin{array}{cc}A&0\\0&B\end{array}\right).
$$

Then (3.3) implies that

$$
g^F=\left(\begin{matrix}B^\sigma&0\\0&A^\tau\end{matrix}\right)
$$

and so we see that G is embedded in $K^{2 \cdot 26^2}$ such that the Frobenius map $F: G \mapsto$ G with fixed point set ${}^2F_4(q_0^2)$ is induced by a twisted Frobenius morphism.

4. **Proof of Theorem** 2

Now we come to a theorem which is the keypoint of the proof of the main theorem.

THEOREM 10: *Let G be a simple simply connected* a/gebraic group and F a Frobenius map on G such that G_F is one of the groups listed in Table 1. Let X denote the type of G_F , such that $G_F \cong X(q)$. Furthermore let c be a *semisimple element such that* $T_F \leq c >$ where T_F is a maximal torus for G_F of the type listed in Table 1. Then there exists a constant $q(X)$ which de*pends only on the type of* G_F *such that, for* $q \geq q(X)$ *, for any reduced word* $w(x,y) = x^{\alpha_1}y^{\beta_1}\cdots x^{\alpha_r}y^{\beta_r}$ of length $\ell \leq \log(q)$, $Gen_{G_F}(c) \nsubseteq \text{Van}_{w_c}(G_F)$, where $Gen_{G_F}(c) = \{ g \in G_F \mid c, g \geq G_F \}.$

Before we prove this theorem we want to mention that Theorem 10 implies Theorem 2 at once. This can be seen as follows: Then for all but finitely many exceptional groups of Lie-type $X(q)$ not of type 2B_2 or 2G_2 , we obtain that $C(X(q)) \geq log(q)$, where $C: \mathcal{G}_2 \mapsto \mathbf{N} \cup \{\infty\}$ is the function introduced in [18], and so the application of Theorem 3 will lead to our assertion.

Proof: Let $w = x^{\alpha_1} y^{\beta_1} \cdots x^{\alpha_r} y^{\beta_r}$ be a reduced word of length less than $\log(q)$ and let us assume that for a fixed type X and infinitely many values for q we have that

(4.1)
$$
\text{Gen}_{G_F}(c) \subseteq \text{Van}_{w_e}(G_F) \text{ where } G_F = X(q).
$$

Theorem A of [20] implies that, for $q \geq q(X)$,

$$
(4.2) \qquad |\text{Gen}_{G_F}(c)| \ge |G_F| - |G_F|^{\epsilon}
$$

where $0 < \varepsilon < 1$ is a fixed real number depending only on the type X of G_F .

Now we want to bound the number of points in Van_{w} (G_F) using Theorems 7 and 9. Let us consider a rational representation $\rho: G \mapsto SL(s, K)$ such that the Frobenius map is induced by a standard Frobenius morphism or twisted Frobenius morphism $F^* : K^{s^2} \mapsto K^{s^2}$. The degrees s of these representations are listed in Table 2.

G_F	G	Representation ρ	Degree of ρ
G ₂	G_2	standard	7
${}^3\!D_4$	D_4	$D_4 \mapsto F_4 \mapsto A_{25}$	26
F_{4}	F_{4}	standard	26
E_{6}	E_{6}	standard	27
E_6	$E_{\rm 6}$	$E_6 \mapsto E_7 \mapsto A_{55}$	56
E_7	$E_{\rm 7}$	standard	56
E_8	$E_{\rm A}$	standard	248
${}^2\!F_a$	$F_{\rm 4}$	$F_4 \mapsto A_{25} \times A_{25} \mapsto A_{51}$	52

Table 2

For these embeddings we have the following:

$$
Var_{w_e}(G) \longrightarrow G
$$

\n
$$
\downarrow \rho \qquad \qquad \downarrow \rho
$$

\n
$$
H_{ij} \longleftarrow Var_{w_{\rho(e)}}(SL(s, K)) \longrightarrow SL(s, K) \longrightarrow K^{s^2}
$$

Each arrow of this diagram denotes an injective morphism of varieties. We define H_{ij} to be the affine variety vanishing on the (i,j) th entry of the function $X \mapsto$ $w_{\rho(c)}(X) - 1$ defined on SL(s, K). By the Corollary of Theorem 5 we know that $\rho(G)$ cannot vanish on $w_{\rho(c)}$ and so there exists (α, β) such that $\rho(G) \nsubseteq H_{\alpha\beta}$. Let us set $H = H_{\alpha\beta}$. Each entry of the matrix $w_{\rho(c)}(X) - 1$ is a polynomial of total degree at most $s \cdot \ell$ in X_{ij} and so the degree of H is also bounded by $s \cdot \ell$. Let us consider $H \cap \rho(G) = \bigcup_{j=1}^R Z_j$, where each variety Z_j is a non-trivial irreducible affine variety. We will write $d_G = \deg(\rho(G))$. The degree is independent of the characteristic and depends only on the corresponding Dynkin diagram of G.

Then (3.1) implies that the number of irreducible components R is bounded by $d_G \cdot s \cdot \ell$. The dimension of all irreducible components is equal to $k-1$, where $k = \dim (\rho(G))$. So if G_F is not of type 2F_4 , Theorem 7 implies that

$$
|\text{Van}_{w_c}(G_F)| = |\text{Van}_{w_{\rho(c)}}(\rho(G))_F|
$$

\n
$$
\leq |(H \cap \rho(G))_F|
$$

\n
$$
\leq \sum_{j=1}^R |(Z_j)_F|
$$

\n
$$
\leq \ell^k \cdot (d_G \cdot s)^k \cdot q^{k-1}.
$$

So we see that $|\text{Van}_{w_c}(G_F)| = \mathcal{O}(\log(q)^k q^{k-1})$ and, by (4.2), $|\text{Gen}_{G_F}(c)| =$ $q^k - o(q^k)$. So we conclude that (4.1) cannot hold for infinitely many q's and this leads to a contradiction in this case. If G_F is of type 2F_4 then we obtain the inequality

$$
|\text{Van}_{w_c}(G_F)| \le (\sqrt{2})^{k-1} \cdot \ell^2 \cdot (d_G \cdot s)^2 \cdot q_0^{k-1}
$$

where $q_0 = \sqrt{q}$. In this case we obtain $|\text{Van}_{w_c}(G_F)| = \mathcal{O}(\log(q_0)^2 q_0^{k-1})$ and $|\text{Gen}_{G_F}(c)| = q_0^k - o(q_0^k)$. This leads to a contradiction as well and the proof is complete.

References

- 1. R. W. Carter, *Simple* Groups of *Lie-type,* Wiley, New York, 1972.
- 2. R. W. Carter, *Conjugacy classes in the Weft* group, Comp. Math. 25 (1972), 1-59.
- 3. R.W. Carter, *Finite Groups of Lie-Type: Conjugacy Classes and Complex Char*acters, Wiley, New York, 1985.
- 4. Yu. M. Gorchakov and V. M. Levchuk, *On approximation* of free *groups,* Alg. i Log. 9, No. 4 (1970), 415-421.
- 5. R. Hartshorne, *Algebraic Geometry,* Springer, New York, 1977.
- 6. R. Katz and W. Magnus, *Residual properties* of free *groups,* Comm. Pure Appl. Math. 22 (1969), 1-13.
- 7. V. M. Levchuk, *A property of Suzuki groups,* Alg. i Log. 9, No. 4 (1970), 551-557.
- 8. V. M. Levchuk and Y. N. Nuzhin, *Structure* of Ree *groups,* Alg. i. Log. 24 No. 1 (1985), 26-41.
- 9. A. Lubotzky, *On a Problem of Magnus,* Proc. Am. Math. Soc. 98, No. 4 (1986), 583-585.
-
- 1O. R. C. Lyndon and J. L. Ullman, *Pairs* of real 2 by 2 matrices *that* generate free products, Mich. Math. J. 15 (1968), 161-166.
- 11. G. Malle, *The maximal subgroups of* ${}^{2}F_{4}(q^{2})$, J. Algebra, to appear.
- 12. C. R. Matthews, L. N. Vaserstein and B.Weisfeiler, *Congruence properties* of Zariski-dense *subgroups,* Proc. London Math. Soc. 48 (1984), 514-532.
- 13. D. Mumford, *Algebraic Geometry, I. Complex Projective Varieties,* Springer, Berlin, 1976.
- 14. A. Peluso, *A residual property* of free groups, Comm. Pure Appl. Math. 19 (1967), 435-437.
- 15. S. Pride, *Residual properties* of free groups, Pacific J. Math. 43 (1972), 725-733.
- 16. R. Steinberg, *Representations* of algebraic groups, Nagoya Math.J. 22 (1963), 33-56.
- 17. Th. Weigel, *Residual Properties* of Free Groups, Ph.D. Thesis, Freiburg, 1989.
- 18. Th. Weigel, *Residual properties* of free groups, J. Algebra, to appear.
- 19. Th. Weigel, *Residual properties* of free *groups, If,* Commun. Algebra, to appear.
- 20. Th. Weigel, Generation *of exceptional* groups, Geom. Dedicata 41 (1992), 63-87.
- 21. B. Weisfeiler, *Strong approximation for Zariski-dense subgroups of semisimple algebraic groups,* Ann. Math. (2) 120 (1984), 271-315.
- 22. J. S. Wilson, *A residual property* of free *groups,* J. Algebra 188 (1991), 36--47.